MakeItFrom.com
Menu (ESC)

Nickel 693 vs. SAE-AISI 1146 Steel

Nickel 693 belongs to the nickel alloys classification, while SAE-AISI 1146 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is SAE-AISI 1146 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
13 to 17
Fatigue Strength, MPa 230
240 to 400
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
72
Shear Strength, MPa 440
410 to 440
Tensile Strength: Ultimate (UTS), MPa 660
670 to 730
Tensile Strength: Yield (Proof), MPa 310
360 to 630

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1010
400
Melting Completion (Liquidus), °C 1350
1460
Melting Onset (Solidus), °C 1310
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 9.1
51
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 60
1.8
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 9.9
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
93 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 250
340 to 1050
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
24 to 26
Strength to Weight: Bending, points 21
22 to 23
Thermal Diffusivity, mm2/s 2.3
14
Thermal Shock Resistance, points 19
20 to 22

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
0
Carbon (C), % 0 to 0.15
0.42 to 0.49
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 2.5 to 6.0
98.3 to 98.8
Manganese (Mn), % 0 to 1.0
0.7 to 1.0
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0.080 to 0.13
Titanium (Ti), % 0 to 1.0
0