MakeItFrom.com
Menu (ESC)

Nickel 693 vs. Sintered 2014 Aluminum

Nickel 693 belongs to the nickel alloys classification, while sintered 2014 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 693 and the bottom bar is sintered 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
0.5 to 3.0
Fatigue Strength, MPa 230
52 to 100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 660
140 to 290
Tensile Strength: Yield (Proof), MPa 310
97 to 280

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1350
650
Melting Onset (Solidus), °C 1310
560
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 9.1
130
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
10
Density, g/cm3 8.1
2.9
Embodied Carbon, kg CO2/kg material 9.9
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 320
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
1.0 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 250
68 to 560
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 23
13 to 27
Strength to Weight: Bending, points 21
20 to 33
Thermal Diffusivity, mm2/s 2.3
51
Thermal Shock Resistance, points 19
6.2 to 13

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
91.5 to 96.3
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
3.5 to 5.0
Iron (Fe), % 2.5 to 6.0
0
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Silicon (Si), % 0 to 0.5
0 to 1.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0
Residuals, % 0
0 to 1.5