MakeItFrom.com
Menu (ESC)

Nickel 693 vs. C19700 Copper

Nickel 693 belongs to the nickel alloys classification, while C19700 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
2.4 to 13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 440
240 to 300
Tensile Strength: Ultimate (UTS), MPa 660
400 to 530
Tensile Strength: Yield (Proof), MPa 310
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 1010
200
Melting Completion (Liquidus), °C 1350
1090
Melting Onset (Solidus), °C 1310
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 9.1
250
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 60
30
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 9.9
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 250
460 to 1160
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23
12 to 16
Strength to Weight: Bending, points 21
14 to 16
Thermal Diffusivity, mm2/s 2.3
73
Thermal Shock Resistance, points 19
14 to 19

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.5
97.4 to 99.59
Iron (Fe), % 2.5 to 6.0
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 53.3 to 67.5
0 to 0.050
Niobium (Nb), % 0.5 to 2.5
0
Phosphorus (P), % 0
0.1 to 0.4
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2