MakeItFrom.com
Menu (ESC)

Nickel 693 vs. S35135 Stainless Steel

Nickel 693 belongs to the nickel alloys classification, while S35135 stainless steel belongs to the iron alloys. They have 62% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
34
Fatigue Strength, MPa 230
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
79
Shear Strength, MPa 440
390
Tensile Strength: Ultimate (UTS), MPa 660
590
Tensile Strength: Yield (Proof), MPa 310
230

Thermal Properties

Latent Heat of Fusion, J/g 330
320
Maximum Temperature: Mechanical, °C 1010
1100
Melting Completion (Liquidus), °C 1350
1430
Melting Onset (Solidus), °C 1310
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 13
16

Otherwise Unclassified Properties

Base Metal Price, % relative 60
37
Density, g/cm3 8.1
8.1
Embodied Carbon, kg CO2/kg material 9.9
6.8
Embodied Energy, MJ/kg 140
94
Embodied Water, L/kg 320
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
160
Resilience: Unit (Modulus of Resilience), kJ/m3 250
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
20
Strength to Weight: Bending, points 21
19
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
0
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 27 to 31
20 to 25
Copper (Cu), % 0 to 0.5
0 to 0.75
Iron (Fe), % 2.5 to 6.0
28.3 to 45
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 53.3 to 67.5
30 to 38
Niobium (Nb), % 0.5 to 2.5
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.5
0.6 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 1.0
0.4 to 1.0