MakeItFrom.com
Menu (ESC)

Nickel 693 vs. S38100 Stainless Steel

Nickel 693 belongs to the nickel alloys classification, while S38100 stainless steel belongs to the iron alloys. They have 41% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is S38100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
45
Fatigue Strength, MPa 230
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 440
400
Tensile Strength: Ultimate (UTS), MPa 660
580
Tensile Strength: Yield (Proof), MPa 310
230

Thermal Properties

Latent Heat of Fusion, J/g 330
320
Maximum Temperature: Mechanical, °C 1010
970
Melting Completion (Liquidus), °C 1350
1400
Melting Onset (Solidus), °C 1310
1350
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 9.1
15
Thermal Expansion, µm/m-K 13
16

Otherwise Unclassified Properties

Base Metal Price, % relative 60
20
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 9.9
3.8
Embodied Energy, MJ/kg 140
54
Embodied Water, L/kg 320
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
210
Resilience: Unit (Modulus of Resilience), kJ/m3 250
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
21
Strength to Weight: Bending, points 21
20
Thermal Diffusivity, mm2/s 2.3
4.0
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
0
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 27 to 31
17 to 19
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 2.5 to 6.0
57.9 to 64
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 53.3 to 67.5
17.5 to 18.5
Niobium (Nb), % 0.5 to 2.5
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.5
1.5 to 2.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 1.0
0