MakeItFrom.com
Menu (ESC)

Nickel 825 vs. Grade 9 Titanium

Nickel 825 belongs to the nickel alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 825 and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
11 to 17
Fatigue Strength, MPa 190
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
40
Shear Strength, MPa 430
430 to 580
Tensile Strength: Ultimate (UTS), MPa 650
700 to 960
Tensile Strength: Yield (Proof), MPa 260
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 980
330
Melting Completion (Liquidus), °C 1400
1640
Melting Onset (Solidus), °C 1370
1590
Specific Heat Capacity, J/kg-K 460
550
Thermal Conductivity, W/m-K 11
8.1
Thermal Expansion, µm/m-K 14
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 41
37
Density, g/cm3 8.2
4.5
Embodied Carbon, kg CO2/kg material 7.2
36
Embodied Energy, MJ/kg 100
580
Embodied Water, L/kg 230
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
1380 to 3220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 22
43 to 60
Strength to Weight: Bending, points 20
39 to 48
Thermal Diffusivity, mm2/s 2.9
3.3
Thermal Shock Resistance, points 17
52 to 71

Alloy Composition

Aluminum (Al), % 0 to 0.2
2.5 to 3.5
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 22 to 37.9
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.6 to 1.2
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4