MakeItFrom.com
Menu (ESC)

Nickel Beryllium 360 vs. Grade 5 Titanium

Nickel beryllium 360 belongs to the nickel alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is nickel beryllium 360 and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 1.0 to 30
8.6 to 11
Fatigue Strength, MPa 260 to 710
530 to 630
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 77
40
Shear Strength, MPa 510 to 1100
600 to 710
Tensile Strength: Ultimate (UTS), MPa 780 to 1860
1000 to 1190
Tensile Strength: Yield (Proof), MPa 380 to 1590
910 to 1110

Thermal Properties

Melting Completion (Liquidus), °C 1330
1610
Melting Onset (Solidus), °C 1200
1650
Specific Heat Capacity, J/kg-K 460
560
Thermal Conductivity, W/m-K 48
6.8
Thermal Expansion, µm/m-K 14
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.0
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 5.4
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.3
4.4

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 190
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 3440
3980 to 5880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 26 to 62
62 to 75
Strength to Weight: Bending, points 23 to 41
50 to 56
Thermal Diffusivity, mm2/s 13
2.7
Thermal Shock Resistance, points 19 to 46
76 to 91

Comparable Variants