MakeItFrom.com
Menu (ESC)

SAE-AISI 1017 Steel vs. AWS E383

Both SAE-AISI 1017 steel and AWS E383 are iron alloys. They have a modest 34% of their average alloy composition in common, which, by itself, doesn't mean much. There are 22 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1017 steel and the bottom bar is AWS E383.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 20 to 30
34
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
80
Tensile Strength: Ultimate (UTS), MPa 420 to 460
580

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Melting Completion (Liquidus), °C 1470
1420
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 53
12
Thermal Expansion, µm/m-K 12
14

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 1.4
6.4
Embodied Energy, MJ/kg 18
89
Embodied Water, L/kg 45
240

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 15 to 16
20
Strength to Weight: Bending, points 16 to 17
19
Thermal Diffusivity, mm2/s 14
3.1
Thermal Shock Resistance, points 13 to 14
15

Alloy Composition

Carbon (C), % 0.15 to 0.2
0 to 0.030
Chromium (Cr), % 0
26.5 to 29
Copper (Cu), % 0
0.6 to 1.5
Iron (Fe), % 99.11 to 99.55
28.8 to 39.2
Manganese (Mn), % 0.3 to 0.6
0.5 to 2.5
Molybdenum (Mo), % 0
3.2 to 4.2
Nickel (Ni), % 0
30 to 33
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0 to 0.050
0 to 0.020