MakeItFrom.com
Menu (ESC)

SAE-AISI 1022 Steel vs. EN 1.0107 Steel

Both SAE-AISI 1022 steel and EN 1.0107 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1022 steel and the bottom bar is EN 1.0107 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 160
110
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17 to 26
29
Fatigue Strength, MPa 190 to 300
160
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 310 to 340
250
Tensile Strength: Ultimate (UTS), MPa 480 to 550
380
Tensile Strength: Yield (Proof), MPa 260 to 450
210

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.1
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.5
Embodied Energy, MJ/kg 18
19
Embodied Water, L/kg 46
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 110
95
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 530
110
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17 to 19
13
Strength to Weight: Bending, points 17 to 19
15
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 15 to 17
12

Alloy Composition

Carbon (C), % 0.18 to 0.23
0 to 0.13
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 98.7 to 99.12
97.7 to 100
Manganese (Mn), % 0.7 to 1.0
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.020
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020