MakeItFrom.com
Menu (ESC)

SAE-AISI 1025 Steel vs. EN 1.0478 Steel

Both SAE-AISI 1025 steel and EN 1.0478 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1025 steel and the bottom bar is EN 1.0478 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130 to 140
130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17 to 28
24
Fatigue Strength, MPa 190 to 280
170
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 290 to 310
280
Tensile Strength: Ultimate (UTS), MPa 450 to 500
440
Tensile Strength: Yield (Proof), MPa 250 to 420
230

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
49
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.2
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.5
Embodied Energy, MJ/kg 18
20
Embodied Water, L/kg 45
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 110
90
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16 to 18
16
Strength to Weight: Bending, points 17 to 18
16
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 14 to 16
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Carbon (C), % 0.22 to 0.28
0 to 0.18
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 99.03 to 99.48
96.9 to 99.4
Manganese (Mn), % 0.3 to 0.6
0.6 to 1.4
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.030
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.015
Vanadium (V), % 0
0 to 0.050