MakeItFrom.com
Menu (ESC)

SAE-AISI 1035 Steel vs. CR019A Copper

SAE-AISI 1035 steel belongs to the iron alloys classification, while CR019A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1035 steel and the bottom bar is CR019A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 13 to 21
15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 570 to 620
220
Tensile Strength: Yield (Proof), MPa 300 to 530
130

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
390
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
100
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
100

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
35
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
42
Embodied Water, L/kg 46
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 99
29
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 740
76
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20 to 22
6.8
Strength to Weight: Bending, points 19 to 21
9.0
Thermal Diffusivity, mm2/s 14
110
Thermal Shock Resistance, points 18 to 20
7.8

Alloy Composition

Bismuth (Bi), % 0
0 to 0.00050
Carbon (C), % 0.32 to 0.38
0
Copper (Cu), % 0
99.874 to 99.92
Iron (Fe), % 98.6 to 99.08
0
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0
Silver (Ag), % 0
0.080 to 0.12
Sulfur (S), % 0 to 0.050
0