SAE-AISI 1035 Steel vs. Grade 25 Titanium
SAE-AISI 1035 steel belongs to the iron alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 1035 steel and the bottom bar is grade 25 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 13 to 21 | |
11 |
Fatigue Strength, MPa | 210 to 340 | |
550 |
Poisson's Ratio | 0.29 | |
0.32 |
Reduction in Area, % | 40 to 45 | |
29 |
Shear Modulus, GPa | 73 | |
40 |
Shear Strength, MPa | 360 to 370 | |
600 |
Tensile Strength: Ultimate (UTS), MPa | 570 to 620 | |
1000 |
Tensile Strength: Yield (Proof), MPa | 300 to 530 | |
940 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
410 |
Maximum Temperature: Mechanical, °C | 400 | |
340 |
Melting Completion (Liquidus), °C | 1460 | |
1610 |
Melting Onset (Solidus), °C | 1420 | |
1560 |
Specific Heat Capacity, J/kg-K | 470 | |
560 |
Thermal Conductivity, W/m-K | 51 | |
7.1 |
Thermal Expansion, µm/m-K | 12 | |
9.6 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.0 | |
1.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.0 | |
2.0 |
Otherwise Unclassified Properties
Density, g/cm3 | 7.8 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
43 |
Embodied Energy, MJ/kg | 18 | |
700 |
Embodied Water, L/kg | 46 | |
320 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 79 to 99 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 250 to 740 | |
4220 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
35 |
Strength to Weight: Axial, points | 20 to 22 | |
62 |
Strength to Weight: Bending, points | 19 to 21 | |
50 |
Thermal Diffusivity, mm2/s | 14 | |
2.8 |
Thermal Shock Resistance, points | 18 to 20 | |
71 |
Alloy Composition
Aluminum (Al), % | 0 | |
5.5 to 6.8 |
Carbon (C), % | 0.32 to 0.38 | |
0 to 0.080 |
Hydrogen (H), % | 0 | |
0 to 0.013 |
Iron (Fe), % | 98.6 to 99.08 | |
0 to 0.4 |
Manganese (Mn), % | 0.6 to 0.9 | |
0 |
Nickel (Ni), % | 0 | |
0.3 to 0.8 |
Nitrogen (N), % | 0 | |
0 to 0.050 |
Oxygen (O), % | 0 | |
0 to 0.2 |
Palladium (Pd), % | 0 | |
0.040 to 0.080 |
Phosphorus (P), % | 0 to 0.040 | |
0 |
Sulfur (S), % | 0 to 0.050 | |
0 |
Titanium (Ti), % | 0 | |
86.7 to 90.6 |
Vanadium (V), % | 0 | |
3.5 to 4.5 |
Residuals, % | 0 | |
0 to 0.4 |