MakeItFrom.com
Menu (ESC)

SAE-AISI 1064 Steel vs. Grade 13 Titanium

SAE-AISI 1064 steel belongs to the iron alloys classification, while grade 13 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1064 steel and the bottom bar is grade 13 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 13
27
Fatigue Strength, MPa 300
140
Poisson's Ratio 0.29
0.32
Reduction in Area, % 42 to 43
34
Shear Modulus, GPa 72
41
Shear Strength, MPa 430 to 440
200
Tensile Strength: Ultimate (UTS), MPa 720 to 730
310
Tensile Strength: Yield (Proof), MPa 470 to 480
190

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 51
22
Thermal Expansion, µm/m-K 11
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
32
Embodied Energy, MJ/kg 19
520
Embodied Water, L/kg 46
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 81
73
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 630
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 25 to 26
19
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 14
8.9
Thermal Shock Resistance, points 25
24

Alloy Composition

Carbon (C), % 0.6 to 0.7
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98.4 to 98.9
0 to 0.2
Manganese (Mn), % 0.5 to 0.8
0
Nickel (Ni), % 0
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.040 to 0.060
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
98.5 to 99.56
Residuals, % 0
0 to 0.4