MakeItFrom.com
Menu (ESC)

SAE-AISI 1070 Steel vs. EN 1.0107 Steel

Both SAE-AISI 1070 steel and EN 1.0107 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1070 steel and the bottom bar is EN 1.0107 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 230
110
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 10 to 13
29
Fatigue Strength, MPa 270 to 350
160
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Shear Strength, MPa 380 to 460
250
Tensile Strength: Ultimate (UTS), MPa 640 to 760
380
Tensile Strength: Yield (Proof), MPa 420 to 560
210

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.1
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.5
Embodied Energy, MJ/kg 19
19
Embodied Water, L/kg 46
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 86
95
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 850
110
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23 to 27
13
Strength to Weight: Bending, points 21 to 24
15
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 21 to 25
12

Alloy Composition

Carbon (C), % 0.65 to 0.75
0 to 0.13
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 98.3 to 98.8
97.7 to 100
Manganese (Mn), % 0.6 to 0.9
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.020
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020