MakeItFrom.com
Menu (ESC)

SAE-AISI 1086 Steel vs. C90400 Bronze

SAE-AISI 1086 steel belongs to the iron alloys classification, while C90400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1086 steel and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 260
77
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11
24
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
41
Tensile Strength: Ultimate (UTS), MPa 760 to 870
310
Tensile Strength: Yield (Proof), MPa 480 to 580
180

Thermal Properties

Latent Heat of Fusion, J/g 240
190
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
990
Melting Onset (Solidus), °C 1410
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 50
75
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
12
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
34
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.4
3.5
Embodied Energy, MJ/kg 19
56
Embodied Water, L/kg 45
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 84
65
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 890
150
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 27 to 31
10
Strength to Weight: Bending, points 24 to 26
12
Thermal Diffusivity, mm2/s 14
23
Thermal Shock Resistance, points 26 to 30
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0.8 to 0.93
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 98.5 to 98.9
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.3 to 0.5
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0 to 0.050
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7