MakeItFrom.com
Menu (ESC)

SAE-AISI 1090 Steel vs. Grade 20 Titanium

SAE-AISI 1090 steel belongs to the iron alloys classification, while grade 20 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1090 steel and the bottom bar is grade 20 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11
5.7 to 17
Fatigue Strength, MPa 320 to 380
550 to 630
Poisson's Ratio 0.29
0.32
Reduction in Area, % 28 to 45
23
Shear Modulus, GPa 72
47
Shear Strength, MPa 470 to 570
560 to 740
Tensile Strength: Ultimate (UTS), MPa 790 to 950
900 to 1270
Tensile Strength: Yield (Proof), MPa 520 to 610
850 to 1190

Thermal Properties

Latent Heat of Fusion, J/g 240
400
Maximum Temperature: Mechanical, °C 400
370
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1410
1600
Specific Heat Capacity, J/kg-K 470
520
Thermal Expansion, µm/m-K 12
9.6

Otherwise Unclassified Properties

Density, g/cm3 7.8
5.0
Embodied Carbon, kg CO2/kg material 1.4
52
Embodied Energy, MJ/kg 19
860
Embodied Water, L/kg 46
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 91
71 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 730 to 1000
2940 to 5760
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
33
Strength to Weight: Axial, points 28 to 34
50 to 70
Strength to Weight: Bending, points 24 to 27
41 to 52
Thermal Shock Resistance, points 25 to 31
55 to 77

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.0
Carbon (C), % 0.85 to 1.0
0 to 0.050
Chromium (Cr), % 0
5.5 to 6.5
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 98 to 98.6
0 to 0.3
Manganese (Mn), % 0.6 to 0.9
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
71 to 77
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants