MakeItFrom.com
Menu (ESC)

SAE-AISI 1090 Steel vs. C93900 Bronze

SAE-AISI 1090 steel belongs to the iron alloys classification, while C93900 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1090 steel and the bottom bar is C93900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
95
Elongation at Break, % 11
5.6
Poisson's Ratio 0.29
0.36
Shear Modulus, GPa 72
35
Tensile Strength: Ultimate (UTS), MPa 790 to 950
190
Tensile Strength: Yield (Proof), MPa 520 to 610
130

Thermal Properties

Latent Heat of Fusion, J/g 240
170
Maximum Temperature: Mechanical, °C 400
140
Melting Completion (Liquidus), °C 1450
940
Melting Onset (Solidus), °C 1410
850
Specific Heat Capacity, J/kg-K 470
340
Thermal Conductivity, W/m-K 50
52
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
11

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
30
Density, g/cm3 7.8
9.1
Embodied Carbon, kg CO2/kg material 1.4
3.0
Embodied Energy, MJ/kg 19
49
Embodied Water, L/kg 46
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 91
9.5
Resilience: Unit (Modulus of Resilience), kJ/m3 730 to 1000
83
Stiffness to Weight: Axial, points 13
5.8
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 28 to 34
5.9
Strength to Weight: Bending, points 24 to 27
8.1
Thermal Diffusivity, mm2/s 13
17
Thermal Shock Resistance, points 25 to 31
7.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.85 to 1.0
0
Copper (Cu), % 0
76.5 to 79.5
Iron (Fe), % 98 to 98.6
0 to 0.4
Lead (Pb), % 0
14 to 18
Manganese (Mn), % 0.6 to 0.9
0
Nickel (Ni), % 0
0 to 0.8
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 1.1