MakeItFrom.com
Menu (ESC)

SAE-AISI 1090 Steel vs. C96600 Copper

SAE-AISI 1090 steel belongs to the iron alloys classification, while C96600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1090 steel and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 11
7.0
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
52
Tensile Strength: Ultimate (UTS), MPa 790 to 950
760
Tensile Strength: Yield (Proof), MPa 520 to 610
480

Thermal Properties

Latent Heat of Fusion, J/g 240
240
Maximum Temperature: Mechanical, °C 400
280
Melting Completion (Liquidus), °C 1450
1180
Melting Onset (Solidus), °C 1410
1100
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 50
30
Thermal Expansion, µm/m-K 12
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
65
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
7.0
Embodied Energy, MJ/kg 19
100
Embodied Water, L/kg 46
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 91
47
Resilience: Unit (Modulus of Resilience), kJ/m3 730 to 1000
830
Stiffness to Weight: Axial, points 13
8.7
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 28 to 34
24
Strength to Weight: Bending, points 24 to 27
21
Thermal Diffusivity, mm2/s 13
8.4
Thermal Shock Resistance, points 25 to 31
25

Alloy Composition

Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0.85 to 1.0
0
Copper (Cu), % 0
63.5 to 69.8
Iron (Fe), % 98 to 98.6
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0.6 to 0.9
0 to 1.0
Nickel (Ni), % 0
29 to 33
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0 to 0.15
Sulfur (S), % 0 to 0.050
0
Residuals, % 0
0 to 0.5