MakeItFrom.com
Menu (ESC)

SAE-AISI 1095 Steel vs. ASTM A182 Grade F3V

Both SAE-AISI 1095 steel and ASTM A182 grade F3V are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1095 steel and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 270
210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 10 to 11
20
Fatigue Strength, MPa 310 to 370
330
Poisson's Ratio 0.29
0.29
Reduction in Area, % 28 to 45
51
Shear Modulus, GPa 72
74
Shear Strength, MPa 400 to 540
410
Tensile Strength: Ultimate (UTS), MPa 680 to 900
660
Tensile Strength: Yield (Proof), MPa 500 to 590
470

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 400
470
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 47
39
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
4.2
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
2.3
Embodied Energy, MJ/kg 19
33
Embodied Water, L/kg 45
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 84
120
Resilience: Unit (Modulus of Resilience), kJ/m3 660 to 930
590
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24 to 32
23
Strength to Weight: Bending, points 22 to 26
21
Thermal Diffusivity, mm2/s 13
10
Thermal Shock Resistance, points 22 to 29
19

Alloy Composition

Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0.9 to 1.0
0.050 to 0.18
Chromium (Cr), % 0
2.8 to 3.2
Iron (Fe), % 98.4 to 98.8
94.4 to 95.7
Manganese (Mn), % 0.3 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0 to 0.050
0 to 0.020
Titanium (Ti), % 0
0.015 to 0.035
Vanadium (V), % 0
0.2 to 0.3