MakeItFrom.com
Menu (ESC)

SAE-AISI 1095 Steel vs. C28000 Muntz Metal

SAE-AISI 1095 steel belongs to the iron alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1095 steel and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 10 to 11
10 to 45
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 72
40
Shear Strength, MPa 400 to 540
230 to 330
Tensile Strength: Ultimate (UTS), MPa 680 to 900
330 to 610
Tensile Strength: Yield (Proof), MPa 500 to 590
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 240
170
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1410
900
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 47
120
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
28
Electrical Conductivity: Equal Weight (Specific), % IACS 11
31

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
46
Embodied Water, L/kg 45
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 84
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 660 to 930
110 to 670
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 24 to 32
11 to 21
Strength to Weight: Bending, points 22 to 26
13 to 20
Thermal Diffusivity, mm2/s 13
40
Thermal Shock Resistance, points 22 to 29
11 to 20

Alloy Composition

Carbon (C), % 0.9 to 1.0
0
Copper (Cu), % 0
59 to 63
Iron (Fe), % 98.4 to 98.8
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Zinc (Zn), % 0
36.3 to 41
Residuals, % 0
0 to 0.3