MakeItFrom.com
Menu (ESC)

SAE-AISI 1095 Steel vs. C82600 Copper

SAE-AISI 1095 steel belongs to the iron alloys classification, while C82600 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1095 steel and the bottom bar is C82600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 10 to 11
1.0 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
46
Tensile Strength: Ultimate (UTS), MPa 680 to 900
570 to 1140
Tensile Strength: Yield (Proof), MPa 500 to 590
320 to 1070

Thermal Properties

Latent Heat of Fusion, J/g 240
240
Maximum Temperature: Mechanical, °C 400
300
Melting Completion (Liquidus), °C 1450
950
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 47
130
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
19
Electrical Conductivity: Equal Weight (Specific), % IACS 11
20

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.4
11
Embodied Energy, MJ/kg 19
180
Embodied Water, L/kg 45
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 84
11 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 660 to 930
430 to 4690
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24 to 32
18 to 36
Strength to Weight: Bending, points 22 to 26
17 to 28
Thermal Diffusivity, mm2/s 13
37
Thermal Shock Resistance, points 22 to 29
19 to 39

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.3 to 2.6
Carbon (C), % 0.9 to 1.0
0
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.35 to 0.65
Copper (Cu), % 0
94.9 to 97.2
Iron (Fe), % 98.4 to 98.8
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.3 to 0.5
0
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0.2 to 0.35
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5