MakeItFrom.com
Menu (ESC)

SAE-AISI 1140 Steel vs. 1235 Aluminum

SAE-AISI 1140 steel belongs to the iron alloys classification, while 1235 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 1140 steel and the bottom bar is 1235 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 14 to 18
28 to 34
Fatigue Strength, MPa 230 to 370
23 to 58
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
26
Shear Strength, MPa 370 to 420
52 to 56
Tensile Strength: Ultimate (UTS), MPa 600 to 700
80 to 84
Tensile Strength: Yield (Proof), MPa 340 to 570
23 to 57

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 51
230
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
60
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
200

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.4
8.3
Embodied Energy, MJ/kg 18
160
Embodied Water, L/kg 46
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 93
17 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 870
3.8 to 24
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 21 to 25
8.2 to 8.6
Strength to Weight: Bending, points 20 to 22
15 to 16
Thermal Diffusivity, mm2/s 14
93
Thermal Shock Resistance, points 18 to 21
3.6 to 3.7

Alloy Composition

Aluminum (Al), % 0
99.35 to 100
Carbon (C), % 0.37 to 0.44
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 98.4 to 98.9
0 to 0.65
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.7 to 1.0
0 to 0.050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0 to 0.65
Sulfur (S), % 0.080 to 0.13
0
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.1