SAE-AISI 1330 Steel vs. S21640 Stainless Steel
Both SAE-AISI 1330 steel and S21640 stainless steel are iron alloys. They have 71% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 1330 steel and the bottom bar is S21640 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 150 to 210 | |
230 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 11 to 23 | |
46 |
Fatigue Strength, MPa | 210 to 380 | |
320 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 73 | |
78 |
Shear Strength, MPa | 330 to 430 | |
520 |
Tensile Strength: Ultimate (UTS), MPa | 520 to 710 | |
740 |
Tensile Strength: Yield (Proof), MPa | 290 to 610 | |
350 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
290 |
Maximum Temperature: Mechanical, °C | 400 | |
940 |
Melting Completion (Liquidus), °C | 1460 | |
1430 |
Melting Onset (Solidus), °C | 1410 | |
1380 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 51 | |
15 |
Thermal Expansion, µm/m-K | 12 | |
17 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.2 | |
2.4 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.3 | |
2.8 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.9 | |
17 |
Density, g/cm3 | 7.8 | |
7.7 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
3.6 |
Embodied Energy, MJ/kg | 19 | |
51 |
Embodied Water, L/kg | 48 | |
150 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 76 to 100 | |
280 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 230 to 990 | |
300 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 19 to 25 | |
27 |
Strength to Weight: Bending, points | 18 to 23 | |
23 |
Thermal Diffusivity, mm2/s | 14 | |
4.0 |
Thermal Shock Resistance, points | 17 to 23 | |
16 |
Alloy Composition
Carbon (C), % | 0.28 to 0.33 | |
0 to 0.080 |
Chromium (Cr), % | 0 | |
17.5 to 19.5 |
Iron (Fe), % | 97.3 to 98 | |
63 to 74.3 |
Manganese (Mn), % | 1.6 to 1.9 | |
3.5 to 6.5 |
Molybdenum (Mo), % | 0 | |
0.5 to 2.0 |
Nickel (Ni), % | 0 | |
4.0 to 6.5 |
Niobium (Nb), % | 0 | |
0.1 to 1.0 |
Nitrogen (N), % | 0 | |
0.080 to 0.3 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.060 |
Silicon (Si), % | 0.15 to 0.35 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.040 | |
0 to 0.030 |