SAE-AISI 4620 Steel vs. Grade 23 Titanium
SAE-AISI 4620 steel belongs to the iron alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 4620 steel and the bottom bar is grade 23 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 16 to 27 | |
6.7 to 11 |
Fatigue Strength, MPa | 260 to 360 | |
470 to 500 |
Poisson's Ratio | 0.29 | |
0.32 |
Shear Modulus, GPa | 73 | |
40 |
Shear Strength, MPa | 320 to 420 | |
540 to 570 |
Tensile Strength: Ultimate (UTS), MPa | 490 to 680 | |
930 to 940 |
Tensile Strength: Yield (Proof), MPa | 350 to 550 | |
850 to 870 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
410 |
Maximum Temperature: Mechanical, °C | 410 | |
340 |
Melting Completion (Liquidus), °C | 1460 | |
1610 |
Melting Onset (Solidus), °C | 1420 | |
1560 |
Specific Heat Capacity, J/kg-K | 470 | |
560 |
Thermal Conductivity, W/m-K | 47 | |
7.1 |
Thermal Expansion, µm/m-K | 13 | |
9.4 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.3 | |
1.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.4 | |
2.0 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 3.2 | |
36 |
Density, g/cm3 | 7.9 | |
4.4 |
Embodied Carbon, kg CO2/kg material | 1.6 | |
38 |
Embodied Energy, MJ/kg | 22 | |
610 |
Embodied Water, L/kg | 50 | |
200 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 100 to 120 | |
61 to 100 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 330 to 800 | |
3430 to 3560 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
35 |
Strength to Weight: Axial, points | 17 to 24 | |
58 to 59 |
Strength to Weight: Bending, points | 18 to 22 | |
48 |
Thermal Diffusivity, mm2/s | 13 | |
2.9 |
Thermal Shock Resistance, points | 15 to 20 | |
67 to 68 |
Alloy Composition
Aluminum (Al), % | 0 | |
5.5 to 6.5 |
Carbon (C), % | 0.17 to 0.22 | |
0 to 0.080 |
Hydrogen (H), % | 0 | |
0 to 0.013 |
Iron (Fe), % | 96.4 to 97.4 | |
0 to 0.25 |
Manganese (Mn), % | 0.45 to 0.65 | |
0 |
Molybdenum (Mo), % | 0.2 to 0.3 | |
0 |
Nickel (Ni), % | 1.7 to 2.0 | |
0 |
Nitrogen (N), % | 0 | |
0 to 0.030 |
Oxygen (O), % | 0 | |
0 to 0.13 |
Phosphorus (P), % | 0 to 0.035 | |
0 |
Silicon (Si), % | 0.15 to 0.35 | |
0 |
Sulfur (S), % | 0 to 0.040 | |
0 |
Titanium (Ti), % | 0 | |
88.1 to 91 |
Vanadium (V), % | 0 | |
3.5 to 4.5 |
Residuals, % | 0 | |
0 to 0.4 |