MakeItFrom.com
Menu (ESC)

SAE-AISI 4620 Steel vs. S44536 Stainless Steel

Both SAE-AISI 4620 steel and S44536 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4620 steel and the bottom bar is S44536 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 210
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16 to 27
22
Fatigue Strength, MPa 260 to 360
190
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
78
Shear Strength, MPa 320 to 420
290
Tensile Strength: Ultimate (UTS), MPa 490 to 680
460
Tensile Strength: Yield (Proof), MPa 350 to 550
280

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 410
990
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 47
21
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
13
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.6
2.8
Embodied Energy, MJ/kg 22
41
Embodied Water, L/kg 50
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 120
89
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 800
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 17 to 24
17
Strength to Weight: Bending, points 18 to 22
17
Thermal Diffusivity, mm2/s 13
5.6
Thermal Shock Resistance, points 15 to 20
16

Alloy Composition

Carbon (C), % 0.17 to 0.22
0 to 0.015
Chromium (Cr), % 0
20 to 23
Iron (Fe), % 96.4 to 97.4
72.8 to 80
Manganese (Mn), % 0.45 to 0.65
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.7 to 2.0
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.8
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030
Titanium (Ti), % 0
0 to 0.8