MakeItFrom.com
Menu (ESC)

SAE-AISI 8645 Steel vs. ASTM A182 Grade F23

Both SAE-AISI 8645 steel and ASTM A182 grade F23 are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 8645 steel and the bottom bar is ASTM A182 grade F23.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 200
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 23
22
Fatigue Strength, MPa 280 to 350
320
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Shear Strength, MPa 380 to 400
360
Tensile Strength: Ultimate (UTS), MPa 600 to 670
570
Tensile Strength: Yield (Proof), MPa 390 to 560
460

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
450
Melting Completion (Liquidus), °C 1460
1500
Melting Onset (Solidus), °C 1420
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
41
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
7.0
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.5
2.5
Embodied Energy, MJ/kg 20
36
Embodied Water, L/kg 50
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 840
550
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21 to 24
20
Strength to Weight: Bending, points 20 to 22
19
Thermal Diffusivity, mm2/s 10
11
Thermal Shock Resistance, points 18 to 20
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0.43 to 0.48
0.040 to 0.1
Chromium (Cr), % 0.4 to 0.6
1.9 to 2.6
Iron (Fe), % 96.5 to 97.7
93.2 to 96.2
Manganese (Mn), % 0.75 to 1.0
0.1 to 0.6
Molybdenum (Mo), % 0.15 to 0.25
0.050 to 0.3
Nickel (Ni), % 0.4 to 0.7
0 to 0.4
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0.15 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.010
Titanium (Ti), % 0
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3