MakeItFrom.com
Menu (ESC)

SAE-AISI 9310 Steel vs. ASTM A182 Grade F122

Both SAE-AISI 9310 steel and ASTM A182 grade F122 are iron alloys. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 9310 steel and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 540 to 610
220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17 to 19
23
Fatigue Strength, MPa 300 to 390
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 510 to 570
450
Tensile Strength: Ultimate (UTS), MPa 820 to 910
710
Tensile Strength: Yield (Proof), MPa 450 to 570
450

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 440
600
Melting Completion (Liquidus), °C 1460
1490
Melting Onset (Solidus), °C 1420
1440
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
24
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
10
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 4.4
12
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.8
3.0
Embodied Energy, MJ/kg 24
44
Embodied Water, L/kg 57
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 150
140
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 860
520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29 to 32
25
Strength to Weight: Bending, points 25 to 27
22
Thermal Diffusivity, mm2/s 13
6.4
Thermal Shock Resistance, points 24 to 27
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.080 to 0.13
0.070 to 0.14
Chromium (Cr), % 1.0 to 1.4
10 to 11.5
Copper (Cu), % 0
0.3 to 1.7
Iron (Fe), % 93.8 to 95.2
81.3 to 87.7
Manganese (Mn), % 0.45 to 0.65
0 to 0.7
Molybdenum (Mo), % 0.080 to 0.15
0.25 to 0.6
Nickel (Ni), % 3.0 to 3.5
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0 to 0.015
0 to 0.020
Silicon (Si), % 0.2 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.012
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zirconium (Zr), % 0
0 to 0.010