MakeItFrom.com
Menu (ESC)

SAE-AISI 9310 Steel vs. Grade CX2M Nickel

SAE-AISI 9310 steel belongs to the iron alloys classification, while grade CX2M nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 9310 steel and the bottom bar is grade CX2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 17 to 19
45
Fatigue Strength, MPa 300 to 390
260
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
84
Tensile Strength: Ultimate (UTS), MPa 820 to 910
550
Tensile Strength: Yield (Proof), MPa 450 to 570
310

Thermal Properties

Latent Heat of Fusion, J/g 250
330
Maximum Temperature: Mechanical, °C 440
990
Melting Completion (Liquidus), °C 1460
1500
Melting Onset (Solidus), °C 1420
1450
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 48
10
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 4.4
65
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.8
12
Embodied Energy, MJ/kg 24
160
Embodied Water, L/kg 57
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 150
210
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 860
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 29 to 32
18
Strength to Weight: Bending, points 25 to 27
17
Thermal Diffusivity, mm2/s 13
2.7
Thermal Shock Resistance, points 24 to 27
15

Alloy Composition

Carbon (C), % 0.080 to 0.13
0 to 0.020
Chromium (Cr), % 1.0 to 1.4
22 to 24
Iron (Fe), % 93.8 to 95.2
0 to 1.5
Manganese (Mn), % 0.45 to 0.65
0 to 1.0
Molybdenum (Mo), % 0.080 to 0.15
15 to 16.5
Nickel (Ni), % 3.0 to 3.5
56.4 to 63
Phosphorus (P), % 0 to 0.015
0 to 0.020
Silicon (Si), % 0.2 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.012
0 to 0.020