MakeItFrom.com
Menu (ESC)

SAE-AISI 9310 Steel vs. C69400 Brass

SAE-AISI 9310 steel belongs to the iron alloys classification, while C69400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 9310 steel and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 19
17
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Shear Strength, MPa 510 to 570
350
Tensile Strength: Ultimate (UTS), MPa 820 to 910
570
Tensile Strength: Yield (Proof), MPa 450 to 570
270

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 440
170
Melting Completion (Liquidus), °C 1460
920
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 48
26
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 4.4
27
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 1.8
2.7
Embodied Energy, MJ/kg 24
44
Embodied Water, L/kg 57
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 150
80
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 860
340
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 29 to 32
19
Strength to Weight: Bending, points 25 to 27
18
Thermal Diffusivity, mm2/s 13
7.7
Thermal Shock Resistance, points 24 to 27
20

Alloy Composition

Carbon (C), % 0.080 to 0.13
0
Chromium (Cr), % 1.0 to 1.4
0
Copper (Cu), % 0
80 to 83
Iron (Fe), % 93.8 to 95.2
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.45 to 0.65
0
Molybdenum (Mo), % 0.080 to 0.15
0
Nickel (Ni), % 3.0 to 3.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0.2 to 0.35
3.5 to 4.5
Sulfur (S), % 0 to 0.012
0
Zinc (Zn), % 0
11.5 to 16.5
Residuals, % 0
0 to 0.5