MakeItFrom.com
Menu (ESC)

SAE-AISI D3 Steel vs. C61400 Bronze

SAE-AISI D3 steel belongs to the iron alloys classification, while C61400 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI D3 steel and the bottom bar is C61400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 9.8 to 15
34 to 40
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 470 to 1220
370 to 380
Tensile Strength: Ultimate (UTS), MPa 770 to 2050
540 to 570
Tensile Strength: Yield (Proof), MPa 480 to 1550
220 to 270

Thermal Properties

Latent Heat of Fusion, J/g 270
220
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1390
1040
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 31
67
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
14
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
15

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
28
Density, g/cm3 7.7
8.5
Embodied Carbon, kg CO2/kg material 3.2
3.0
Embodied Energy, MJ/kg 48
48
Embodied Water, L/kg 100
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97 to 180
160 to 170
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 74
18 to 19
Strength to Weight: Bending, points 24 to 47
17 to 18
Thermal Diffusivity, mm2/s 8.3
19
Thermal Shock Resistance, points 23 to 63
18 to 20

Alloy Composition

Aluminum (Al), % 0
6.0 to 8.0
Carbon (C), % 2.0 to 2.4
0
Chromium (Cr), % 11 to 13.5
0
Copper (Cu), % 0 to 0.25
86 to 92.5
Iron (Fe), % 80.3 to 87
1.5 to 3.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 0.6
0 to 1.0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.030
0 to 0.015
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 0 to 1.0
0
Vanadium (V), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5