MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. AISI 416 Stainless Steel

Sintered 2014 aluminum belongs to the aluminum alloys classification, while AISI 416 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 0.5 to 3.0
13 to 31
Fatigue Strength, MPa 52 to 100
230 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 140 to 290
510 to 800
Tensile Strength: Yield (Proof), MPa 97 to 280
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
680
Melting Completion (Liquidus), °C 650
1530
Melting Onset (Solidus), °C 560
1480
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
30
Thermal Expansion, µm/m-K 23
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.0
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1150
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
220 to 940
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 13 to 27
18 to 29
Strength to Weight: Bending, points 20 to 33
18 to 25
Thermal Diffusivity, mm2/s 51
8.1
Thermal Shock Resistance, points 6.2 to 13
19 to 30

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 3.5 to 5.0
0
Iron (Fe), % 0
83.2 to 87.9
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0
0 to 1.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 1.2
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Residuals, % 0 to 1.5
0