MakeItFrom.com
Menu (ESC)

C10500 Copper vs. S15700 Stainless Steel

C10500 copper belongs to the copper alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C10500 copper and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.8 to 51
1.1 to 29
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 150 to 210
770 to 1070
Tensile Strength: Ultimate (UTS), MPa 220 to 400
1180 to 1890
Tensile Strength: Yield (Proof), MPa 75 to 400
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1080
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
15
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 42
47
Embodied Water, L/kg 350
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 90
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 680
640 to 4660
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.8 to 12
42 to 67
Strength to Weight: Bending, points 9.1 to 14
32 to 43
Thermal Diffusivity, mm2/s 110
4.2
Thermal Shock Resistance, points 7.8 to 14
39 to 63

Alloy Composition

Aluminum (Al), % 0
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 99.89 to 99.966
0
Iron (Fe), % 0
69.6 to 76.8
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
6.5 to 7.7
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0.034 to 0.060
0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.050
0