MakeItFrom.com
Menu (ESC)

C11400 Copper vs. AISI 420 Stainless Steel

C11400 copper belongs to the copper alloys classification, while AISI 420 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C11400 copper and the bottom bar is AISI 420 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.8 to 51
8.0 to 15
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 10 to 62
84
Shear Modulus, GPa 43
76
Shear Strength, MPa 150 to 210
420 to 1010
Tensile Strength: Ultimate (UTS), MPa 220 to 400
690 to 1720
Tensile Strength: Yield (Proof), MPa 75 to 400
380 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
620
Melting Completion (Liquidus), °C 1080
1510
Melting Onset (Solidus), °C 1030
1450
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
27
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
7.5
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.0
Embodied Energy, MJ/kg 42
28
Embodied Water, L/kg 350
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 90
88 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 680
380 to 4410
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.8 to 12
25 to 62
Strength to Weight: Bending, points 9.1 to 14
22 to 41
Thermal Diffusivity, mm2/s 110
7.3
Thermal Shock Resistance, points 7.8 to 14
25 to 62

Alloy Composition

Carbon (C), % 0
0.15 to 0.4
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 99.84 to 99.966
0
Iron (Fe), % 0
82.3 to 87.9
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0.034 to 0.060
0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.1
0