MakeItFrom.com
Menu (ESC)

C11400 Copper vs. C87900 Brass

Both C11400 copper and C87900 brass are copper alloys. They have 66% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C11400 copper and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.8 to 51
25
Poisson's Ratio 0.34
0.31
Rockwell B Hardness 10 to 62
70
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 220 to 400
480
Tensile Strength: Yield (Proof), MPa 75 to 400
240

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 1080
930
Melting Onset (Solidus), °C 1030
900
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 390
120
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
15
Electrical Conductivity: Equal Weight (Specific), % IACS 100
17

Otherwise Unclassified Properties

Base Metal Price, % relative 32
24
Density, g/cm3 9.0
8.1
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 42
46
Embodied Water, L/kg 350
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 90
100
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 680
270
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 6.8 to 12
17
Strength to Weight: Bending, points 9.1 to 14
17
Thermal Diffusivity, mm2/s 110
37
Thermal Shock Resistance, points 7.8 to 14
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 99.84 to 99.966
63 to 69.2
Iron (Fe), % 0
0 to 0.4
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.8 to 1.2
Silver (Ag), % 0.034 to 0.060
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
30 to 36
Residuals, % 0 to 0.1
0