MakeItFrom.com
Menu (ESC)

C11600 Copper vs. AISI 445 Stainless Steel

C11600 copper belongs to the copper alloys classification, while AISI 445 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C11600 copper and the bottom bar is AISI 445 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.7 to 50
25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 160 to 240
310
Tensile Strength: Ultimate (UTS), MPa 230 to 410
480
Tensile Strength: Yield (Proof), MPa 77 to 410
230

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
950
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1030
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 35
12
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 42
38
Embodied Water, L/kg 390
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 91
98
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 710
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.2 to 13
17
Strength to Weight: Bending, points 9.4 to 14
18
Thermal Diffusivity, mm2/s 110
5.6
Thermal Shock Resistance, points 8.2 to 15
16

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 99.78 to 99.915
0.3 to 0.6
Iron (Fe), % 0
74.9 to 80.7
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0.085 to 0.12
0
Sulfur (S), % 0
0 to 0.012
Residuals, % 0 to 0.1
0