MakeItFrom.com
Menu (ESC)

C11600 Copper vs. EN 1.4948 Stainless Steel

C11600 copper belongs to the copper alloys classification, while EN 1.4948 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C11600 copper and the bottom bar is EN 1.4948 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.7 to 50
48
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 160 to 240
430
Tensile Strength: Ultimate (UTS), MPa 230 to 410
610
Tensile Strength: Yield (Proof), MPa 77 to 410
210

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
930
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
17
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 35
15
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 42
43
Embodied Water, L/kg 390
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 91
230
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 710
110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.2 to 13
22
Strength to Weight: Bending, points 9.4 to 14
21
Thermal Diffusivity, mm2/s 110
4.5
Thermal Shock Resistance, points 8.2 to 15
14

Alloy Composition

Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 99.78 to 99.915
0
Iron (Fe), % 0
66.8 to 75
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 11
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0.085 to 0.12
0
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.1
0