MakeItFrom.com
Menu (ESC)

C11600 Copper vs. SAE-AISI D4 Steel

C11600 copper belongs to the copper alloys classification, while SAE-AISI D4 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C11600 copper and the bottom bar is SAE-AISI D4 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.7 to 50
8.4 to 15
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
74
Shear Strength, MPa 160 to 240
460 to 1210
Tensile Strength: Ultimate (UTS), MPa 230 to 410
760 to 2060
Tensile Strength: Yield (Proof), MPa 77 to 410
470 to 1540

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
31
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
4.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
5.0

Otherwise Unclassified Properties

Base Metal Price, % relative 35
8.0
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 42
49
Embodied Water, L/kg 390
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 91
100 to 160
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.2 to 13
27 to 75
Strength to Weight: Bending, points 9.4 to 14
24 to 47
Thermal Diffusivity, mm2/s 110
8.3
Thermal Shock Resistance, points 8.2 to 15
23 to 63

Alloy Composition

Carbon (C), % 0
2.1 to 2.4
Chromium (Cr), % 0
11 to 13
Copper (Cu), % 99.78 to 99.915
0 to 0.25
Iron (Fe), % 0
80.6 to 86.3
Manganese (Mn), % 0
0 to 0.6
Molybdenum (Mo), % 0
0.7 to 1.2
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Silver (Ag), % 0.085 to 0.12
0
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0 to 1.0
Residuals, % 0 to 0.1
0