MakeItFrom.com
Menu (ESC)

C11600 Copper vs. C64200 Bronze

Both C11600 copper and C64200 bronze are copper alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C11600 copper and the bottom bar is C64200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.7 to 50
14 to 35
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
42
Shear Strength, MPa 160 to 240
330 to 390
Tensile Strength: Ultimate (UTS), MPa 230 to 410
540 to 640
Tensile Strength: Yield (Proof), MPa 77 to 410
230 to 320

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1080
1000
Melting Onset (Solidus), °C 1030
980
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 390
45
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 35
29
Density, g/cm3 9.0
8.3
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 42
50
Embodied Water, L/kg 390
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 91
73 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 710
240 to 470
Stiffness to Weight: Axial, points 7.2
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 7.2 to 13
18 to 21
Strength to Weight: Bending, points 9.4 to 14
18 to 20
Thermal Diffusivity, mm2/s 110
13
Thermal Shock Resistance, points 8.2 to 15
20 to 23

Alloy Composition

Aluminum (Al), % 0
6.3 to 7.6
Arsenic (As), % 0
0 to 0.15
Copper (Cu), % 99.78 to 99.915
88.2 to 92.2
Iron (Fe), % 0
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0
1.5 to 2.2
Silver (Ag), % 0.085 to 0.12
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5

Comparable Variants