MakeItFrom.com
Menu (ESC)

C11600 Copper vs. S40930 Stainless Steel

C11600 copper belongs to the copper alloys classification, while S40930 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C11600 copper and the bottom bar is S40930 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.7 to 50
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Shear Strength, MPa 160 to 240
270
Tensile Strength: Ultimate (UTS), MPa 230 to 410
430
Tensile Strength: Yield (Proof), MPa 77 to 410
190

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
710
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 35
8.5
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.3
Embodied Energy, MJ/kg 42
32
Embodied Water, L/kg 390
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 91
80
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 710
94
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.2 to 13
16
Strength to Weight: Bending, points 9.4 to 14
16
Thermal Diffusivity, mm2/s 110
6.7
Thermal Shock Resistance, points 8.2 to 15
16

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 99.78 to 99.915
0
Iron (Fe), % 0
84.7 to 89.4
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.080 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0.085 to 0.12
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0.050 to 0.2
Residuals, % 0 to 0.1
0