MakeItFrom.com
Menu (ESC)

C12000 Copper vs. 6013 Aluminum

C12000 copper belongs to the copper alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C12000 copper and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 2.8 to 50
3.4 to 22
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
26
Shear Strength, MPa 160 to 240
190 to 240
Tensile Strength: Ultimate (UTS), MPa 230 to 410
310 to 410
Tensile Strength: Yield (Proof), MPa 77 to 400
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1080
650
Melting Onset (Solidus), °C 1080
580
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 390
150
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
38
Electrical Conductivity: Equal Weight (Specific), % IACS 98
120

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 9.0
2.8
Embodied Carbon, kg CO2/kg material 2.6
8.3
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 91
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
200 to 900
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
49
Strength to Weight: Axial, points 7.2 to 13
31 to 41
Strength to Weight: Bending, points 9.4 to 14
37 to 44
Thermal Diffusivity, mm2/s 110
60
Thermal Shock Resistance, points 8.2 to 15
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.8 to 97.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 99.9 to 99.996
0.6 to 1.1
Iron (Fe), % 0
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0
0.2 to 0.8
Phosphorus (P), % 0.0040 to 0.012
0
Silicon (Si), % 0
0.6 to 1.0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15