MakeItFrom.com
Menu (ESC)

C12000 Copper vs. C82700 Copper

Both C12000 copper and C82700 copper are copper alloys. They have a very high 96% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C12000 copper and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.8 to 50
1.8
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
46
Tensile Strength: Ultimate (UTS), MPa 230 to 410
1200
Tensile Strength: Yield (Proof), MPa 77 to 400
1020

Thermal Properties

Latent Heat of Fusion, J/g 210
240
Maximum Temperature: Mechanical, °C 200
300
Melting Completion (Liquidus), °C 1080
950
Melting Onset (Solidus), °C 1080
860
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 390
130
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
20
Electrical Conductivity: Equal Weight (Specific), % IACS 98
21

Otherwise Unclassified Properties

Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.6
12
Embodied Energy, MJ/kg 41
180
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 91
21
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
4260
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 7.2 to 13
38
Strength to Weight: Bending, points 9.4 to 14
29
Thermal Diffusivity, mm2/s 110
39
Thermal Shock Resistance, points 8.2 to 15
41

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Chromium (Cr), % 0
0 to 0.090
Copper (Cu), % 99.9 to 99.996
94.6 to 96.7
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Nickel (Ni), % 0
1.0 to 1.5
Phosphorus (P), % 0.0040 to 0.012
0
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5