MakeItFrom.com
Menu (ESC)

C12000 Copper vs. C95520 Bronze

Both C12000 copper and C95520 bronze are copper alloys. They have 78% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C12000 copper and the bottom bar is C95520 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.8 to 50
2.6
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
44
Tensile Strength: Ultimate (UTS), MPa 230 to 410
970
Tensile Strength: Yield (Proof), MPa 77 to 400
530

Thermal Properties

Latent Heat of Fusion, J/g 210
240
Maximum Temperature: Mechanical, °C 200
240
Melting Completion (Liquidus), °C 1080
1070
Melting Onset (Solidus), °C 1080
1020
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 390
40
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
11
Electrical Conductivity: Equal Weight (Specific), % IACS 98
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 9.0
8.2
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 41
58
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 91
21
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
1210
Stiffness to Weight: Axial, points 7.2
8.0
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 7.2 to 13
33
Strength to Weight: Bending, points 9.4 to 14
27
Thermal Diffusivity, mm2/s 110
11
Thermal Shock Resistance, points 8.2 to 15
33

Alloy Composition

Aluminum (Al), % 0
10.5 to 11.5
Chromium (Cr), % 0
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 99.9 to 99.996
74.5 to 81.3
Iron (Fe), % 0
4.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
4.2 to 6.0
Phosphorus (P), % 0.0040 to 0.012
0
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5