MakeItFrom.com
Menu (ESC)

C12500 Copper vs. 851.0 Aluminum

C12500 copper belongs to the copper alloys classification, while 851.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C12500 copper and the bottom bar is 851.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 1.5 to 50
3.9 to 9.1
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
26
Tensile Strength: Ultimate (UTS), MPa 220 to 420
130 to 140

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
630
Melting Onset (Solidus), °C 1070
360
Specific Heat Capacity, J/kg-K 390
850
Thermal Conductivity, W/m-K 350
180
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
46
Electrical Conductivity: Equal Weight (Specific), % IACS 93
140

Otherwise Unclassified Properties

Base Metal Price, % relative 31
14
Density, g/cm3 8.9
3.1
Embodied Carbon, kg CO2/kg material 2.6
8.4
Embodied Energy, MJ/kg 41
160
Embodied Water, L/kg 310
1140

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
45
Strength to Weight: Axial, points 6.9 to 13
12 to 13
Strength to Weight: Bending, points 9.1 to 14
19 to 20
Thermal Diffusivity, mm2/s 100
69
Thermal Shock Resistance, points 7.8 to 15
6.1 to 6.3

Alloy Composition

Aluminum (Al), % 0
86.6 to 91.5
Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Copper (Cu), % 99.88 to 100
0.7 to 1.3
Iron (Fe), % 0
0 to 0.7
Lead (Pb), % 0 to 0.0040
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.050
0.3 to 0.7
Silicon (Si), % 0
2.0 to 3.0
Tellurium (Te), % 0 to 0.025
0
Tin (Sn), % 0
5.5 to 7.0
Titanium (Ti), % 0
0 to 0.2
Residuals, % 0
0 to 0.3