MakeItFrom.com
Menu (ESC)

C12500 Copper vs. ACI-ASTM CG12 Steel

C12500 copper belongs to the copper alloys classification, while ACI-ASTM CG12 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C12500 copper and the bottom bar is ACI-ASTM CG12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.5 to 50
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Tensile Strength: Ultimate (UTS), MPa 220 to 420
550
Tensile Strength: Yield (Proof), MPa 75 to 390
220

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1040
Melting Completion (Liquidus), °C 1080
1410
Melting Onset (Solidus), °C 1070
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 350
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 93
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
18
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.3
Embodied Energy, MJ/kg 41
48
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6 to 88
180
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 660
120
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.9 to 13
20
Strength to Weight: Bending, points 9.1 to 14
19
Thermal Diffusivity, mm2/s 100
4.0
Thermal Shock Resistance, points 7.8 to 15
12

Alloy Composition

Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 99.88 to 100
0
Iron (Fe), % 0
60.3 to 70
Lead (Pb), % 0 to 0.0040
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.050
10 to 13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tellurium (Te), % 0 to 0.025
0
Residuals, % 0 to 0.3
0