MakeItFrom.com
Menu (ESC)

C12500 Copper vs. AISI 316L Stainless Steel

C12500 copper belongs to the copper alloys classification, while AISI 316L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C12500 copper and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.5 to 50
9.0 to 50
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 150 to 220
370 to 690
Tensile Strength: Ultimate (UTS), MPa 220 to 420
530 to 1160
Tensile Strength: Yield (Proof), MPa 75 to 390
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 1080
1400
Melting Onset (Solidus), °C 1070
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 350
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 93
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
19
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.9
Embodied Energy, MJ/kg 41
53
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6 to 88
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 660
93 to 1880
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.9 to 13
19 to 41
Strength to Weight: Bending, points 9.1 to 14
18 to 31
Thermal Diffusivity, mm2/s 100
4.1
Thermal Shock Resistance, points 7.8 to 15
12 to 25

Alloy Composition

Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 99.88 to 100
0
Iron (Fe), % 0
62 to 72
Lead (Pb), % 0 to 0.0040
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.050
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0 to 0.025
0
Residuals, % 0 to 0.3
0