MakeItFrom.com
Menu (ESC)

C12500 Copper vs. C68300 Brass

Both C12500 copper and C68300 brass are copper alloys. They have 61% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C12500 copper and the bottom bar is C68300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 1.5 to 50
15
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
40
Shear Strength, MPa 150 to 220
260
Tensile Strength: Ultimate (UTS), MPa 220 to 420
430
Tensile Strength: Yield (Proof), MPa 75 to 390
260

Thermal Properties

Latent Heat of Fusion, J/g 210
180
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1080
900
Melting Onset (Solidus), °C 1070
890
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 350
120
Thermal Expansion, µm/m-K 17
20

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
46
Embodied Water, L/kg 310
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6 to 88
56
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 660
330
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 6.9 to 13
15
Strength to Weight: Bending, points 9.1 to 14
16
Thermal Diffusivity, mm2/s 100
38
Thermal Shock Resistance, points 7.8 to 15
14

Alloy Composition

Antimony (Sb), % 0 to 0.0030
0.3 to 1.0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Cadmium (Cd), % 0
0 to 0.010
Copper (Cu), % 99.88 to 100
59 to 63
Lead (Pb), % 0 to 0.0040
0 to 0.090
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0
0.3 to 1.0
Tellurium (Te), % 0 to 0.025
0
Tin (Sn), % 0
0.050 to 0.2
Zinc (Zn), % 0
34.2 to 40.4
Residuals, % 0
0 to 0.5