MakeItFrom.com
Menu (ESC)

C12500 Copper vs. C82600 Copper

Both C12500 copper and C82600 copper are copper alloys. They have a very high 96% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C12500 copper and the bottom bar is C82600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 1.5 to 50
1.0 to 20
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
46
Tensile Strength: Ultimate (UTS), MPa 220 to 420
570 to 1140
Tensile Strength: Yield (Proof), MPa 75 to 390
320 to 1070

Thermal Properties

Latent Heat of Fusion, J/g 210
240
Maximum Temperature: Mechanical, °C 200
300
Melting Completion (Liquidus), °C 1080
950
Melting Onset (Solidus), °C 1070
860
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 350
130
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
19
Electrical Conductivity: Equal Weight (Specific), % IACS 93
20

Otherwise Unclassified Properties

Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.6
11
Embodied Energy, MJ/kg 41
180
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6 to 88
11 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 660
430 to 4690
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 6.9 to 13
18 to 36
Strength to Weight: Bending, points 9.1 to 14
17 to 28
Thermal Diffusivity, mm2/s 100
37
Thermal Shock Resistance, points 7.8 to 15
19 to 39

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Beryllium (Be), % 0
2.3 to 2.6
Bismuth (Bi), % 0 to 0.0030
0
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.35 to 0.65
Copper (Cu), % 99.88 to 100
94.9 to 97.2
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0 to 0.0040
0 to 0.020
Nickel (Ni), % 0 to 0.050
0 to 0.2
Silicon (Si), % 0
0.2 to 0.35
Tellurium (Te), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5