MakeItFrom.com
Menu (ESC)

C12500 Copper vs. N06975 Nickel

C12500 copper belongs to the copper alloys classification, while N06975 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C12500 copper and the bottom bar is N06975 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.5 to 50
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Shear Strength, MPa 150 to 220
470
Tensile Strength: Ultimate (UTS), MPa 220 to 420
660
Tensile Strength: Yield (Proof), MPa 75 to 390
250

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1070
1380
Specific Heat Capacity, J/kg-K 390
460
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 31
50
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.6
8.9
Embodied Energy, MJ/kg 41
120
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6 to 88
240
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 660
150
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.9 to 13
22
Strength to Weight: Bending, points 9.1 to 14
20
Thermal Shock Resistance, points 7.8 to 15
18

Alloy Composition

Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 99.88 to 100
0.7 to 1.2
Iron (Fe), % 0
10.2 to 23.6
Lead (Pb), % 0 to 0.0040
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 0 to 0.050
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0 to 0.025
0
Titanium (Ti), % 0
0.7 to 1.5
Residuals, % 0 to 0.3
0