MakeItFrom.com
Menu (ESC)

C12600 Copper vs. 2030 Aluminum

C12600 copper belongs to the copper alloys classification, while 2030 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C12600 copper and the bottom bar is 2030 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 56
5.6 to 8.0
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 56
26
Shear Strength, MPa 190
220 to 250
Tensile Strength: Ultimate (UTS), MPa 270
370 to 420
Tensile Strength: Yield (Proof), MPa 69
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 210
390
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 1080
640
Melting Onset (Solidus), °C 1030
510
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
34
Electrical Conductivity: Equal Weight (Specific), % IACS 29
99

Otherwise Unclassified Properties

Base Metal Price, % relative 30
10
Density, g/cm3 8.9
3.1
Embodied Carbon, kg CO2/kg material 2.6
8.0
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 21
390 to 530
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
45
Strength to Weight: Axial, points 8.2
33 to 38
Strength to Weight: Bending, points 10
37 to 40
Thermal Diffusivity, mm2/s 39
50
Thermal Shock Resistance, points 9.5
16 to 19

Alloy Composition

Aluminum (Al), % 0
88.9 to 95.2
Bismuth (Bi), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 99.5 to 99.8
3.3 to 4.5
Iron (Fe), % 0
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0
0.5 to 1.3
Manganese (Mn), % 0
0.2 to 1.0
Phosphorus (P), % 0.2 to 0.4
0
Silicon (Si), % 0
0 to 0.8
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3