MakeItFrom.com
Menu (ESC)

C12600 Copper vs. EN AC-46500 Aluminum

C12600 copper belongs to the copper alloys classification, while EN AC-46500 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C12600 copper and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
74
Elongation at Break, % 56
1.0
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 56
28
Tensile Strength: Ultimate (UTS), MPa 270
270
Tensile Strength: Yield (Proof), MPa 69
160

Thermal Properties

Latent Heat of Fusion, J/g 210
520
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
610
Melting Onset (Solidus), °C 1030
520
Specific Heat Capacity, J/kg-K 390
880
Thermal Conductivity, W/m-K 130
100
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
26
Electrical Conductivity: Equal Weight (Specific), % IACS 29
81

Otherwise Unclassified Properties

Base Metal Price, % relative 30
10
Density, g/cm3 8.9
2.9
Embodied Carbon, kg CO2/kg material 2.6
7.6
Embodied Energy, MJ/kg 41
140
Embodied Water, L/kg 310
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 21
170
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
49
Strength to Weight: Axial, points 8.2
26
Strength to Weight: Bending, points 10
32
Thermal Diffusivity, mm2/s 39
41
Thermal Shock Resistance, points 9.5
12

Alloy Composition

Aluminum (Al), % 0
77.9 to 90
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 99.5 to 99.8
2.0 to 4.0
Iron (Fe), % 0
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0
0 to 0.55
Nickel (Ni), % 0
0 to 0.55
Phosphorus (P), % 0.2 to 0.4
0
Silicon (Si), % 0
8.0 to 11
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.25